1. Home
  2. Programs
  3. Practical Neurology: Focus on Epilepsy & Seizures
advertisement

Pharmacology of Emerging Selective Sodium Channel Antagonists for the Treatment of Epilepsy

The development of isoform-selective sodium channel inhibitors that spare GABAergic interneuron function is in its early stages but holds promise as an exciting area of research.

11/10/2025
Choose a format
Media formats available:
Completing the pre-test is required to access this content.
Completing the pre-survey is required to view this content.

Ready to Claim Your Credits?

You have attempts to pass this post-test. Take your time and review carefully before submitting.

Good luck!

Details
  • References

    1. Brodie MJ. Antiepileptic drug therapy: the story so far. Seizure. 2010;19(10):650-655. doi:10.1016/j.seizure.2010.10.027 

    2. Sankar R, Weaver DF. Basic principles of medicinal chemistry. In: Engel J Jr, Pedley TA, eds. Epilepsy: A Comprehensive Textbook. Lippincott-Raven; 1998:1393-1403. 

    3. Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952;116(4):449-472. doi:10.1113/jphysiol.1952.sp004717 

    4. McLean MJ, Macdonald RL. Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. J Pharmacol Exp Ther. 1983;227(3):779-789. 

    5. McLean MJ, Macdonald RL. Carbamazepine and 10,11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther. 1986;238(2):727-738. 

    6. McLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther. 1986;237(3):1001-1011. 

    7. Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology. 2020;168:107966. doi:10.1016/j.neuropharm.2020.107966 

    8. Catterall WA. Forty years of sodium channels: structure, function, pharmacology, and epilepsy. Neurochem Res. 2017;42(9):2495-2504. doi:10.1007/s11064-017-2314-9 

    9. Whitaker WR, Clare JJ, Powell AJ, et al. Distribution of voltage-gated sodium channel alpha-subunit and beta-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. J Comp Neurol. 2000;422(1):123-139. doi:10.1002/ (sici)1096-9861(20000619)422:1<123::aid-cne8>3.0.co;2-x 

    10. Lorincz A, Nusser Z. Cell-type-dependent molecular composition of the axon initial segment. J Neurosci. 2008;28(53):14329-14340. doi:10.1523/JNEUROSCI.4833-08.2008 

    11. Matsumoto H, Ajmone Marsan C. Cellular mechanisms in experimental epileptic seizures. Science. 1964;144(3615):193-194. doi:10.1126/science.144.3615.193 

    12. Matsumoto H. Intracellular events during the activation of cortical epileptiform discharges. Electroencephalogr Clin Neurophysiol. 1964;17:294-307. doi:10.1016/0013-4694(64)90130-0 

    13. Stafstrom CE. Persistent sodium current and its role in epilepsy. Epilepsy Curr. 2007;7(1):15-22. doi:10.1111/j.1535- 7511.2007.00156.x 

    14. Kearney JA, Plummer NW, Smith MR, et al. A gain-of-function sequence variation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience. 2001;102(2):307-317. doi:10.1016/s0306- 4522(00)00479-6 

    15. Lopez-Santiago LF, Yuan Y, Wagnon JL, et al. Neuronal hyperexcitability in a mouse model of SCN8A epileptic encephalopathy. Proc Natl Acad Sci USA. 2017;114(9):2383-2388. doi:10.1073/pnas.1616821114 

    16. Chen S, Su H, Yue C, et al. An increase in persistent sodium current contributes to intrinsic neuronal bursting after status epilepticus. J Neurophysiol. 2011;105(1):117-129. doi:10.1152/jn.00184.2010 

    17. Becker AJ, Pitsch J, Sochivko D, et al. Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci. 2008;28(49):13341-13353. doi:10.1523/JNEUROSCI.1421-08.2008 

    18. Jung S, Warner LN, Pitsch J, et al. Rapid loss of dendritic HCN channel expression in hippocampal pyramidal neurons following status epilepticus. J Neurosci. 2011;31(40):14291-14295. doi:10.1523/JNEUROSCI.1148-11.2011 

    19. Blumenfeld H, Lampert A, Klein JP, et al. Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis. Epilepsia. 2009;50(1):44-55. doi:10.1111/j.1528-1167.2008.01710.x 

    20. Vreugdenhil M, Hoogland G, van Veelen CW, Wadman WJ. Persistent sodium current in subicular neurons isolated from patients with temporal lobe epilepsy. Eur J Neurosci. 2004;19(10):2769-2778. doi:10.1111/j.1460- 9568.2004.03400.x 

    21. Aman TK, Raman IM. Resurgent current in context: insights from the structure and function of Na and K channels. Biophys J. 2024;123(14):1924-1941. doi:10.1016/j.bpj.2023.12.016 

    22. Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci. 2004;5(7):553-564. doi:10.1038/nrn1430 

    23. Wengert ER, Patel MK. The role of the persistent sodium current in epilepsy. Epilepsy Curr. 2021;21(1):40-47. doi:10.1177/1535759720973978 

    24. Goodchild SJ, Shuart NG, Williams AD, et al. Molecular pharmacology of selective NaV1.6 and dual NaV1.6/NaV1.2 channel inhibitors that suppress excitatory neuronal activity ex vivo. ACS Chem Neurosci. 2024;15(6):1169-1184. doi:10.1021/acschemneuro.3c00757 

    25. Nakamura M, Cho JH, Shin H, Jang IS. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur J Pharmacol. 2019;855:175-182. doi:10.1016/j. ejphar.2019.05.007 

    26. Makridis KL, Friedo AL, Kellinghaus C, et al. Successful treatment of adult Dravet syndrome patients with cenobamate. Epilepsia. 2022;63(12):e164-e171. doi:10.1111/epi.17427 

    27. Cagigal R, Romero-Del-Rincon C, Fernandez-Perrone A, et al. Lack of effectiveness and seizure worsening with cenobamate in pediatric patients with Dravet syndrome. Epilepsia. 2025;66(6):e83-e89. doi:10.1111/epi.18426 

    28. Gjerulfsen CE, Oudin MJ, Furia F, et al. Cenobamate as add-on treatment for SCN8A developmental and epileptic encephalopathy. Epilepsia. 2025;66(4):1119-1128. doi:10.1111/epi.18257 

    29. Sharma R, Nakamura M, Neupane C, et al. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur J Pharmacol. 2020;879:173117. doi:10.1016/j.ejphar.2020.173117 

    30. Focken T, Burford K, Grimwood ME, et al. Identification of CNS-penetrant aryl sulfonamides as isoform-selective NaV1.6 inhibitors with efficacy in mouse models of epilepsy. J Med Chem. 2019;62(21):9618-9641. doi:10.1021/acs. jmedchem.9b01032 

    31. Johnson JP, Focken T, Khakh K, et al. NBI-921352, a first-in-class, NaV1.6 selective, sodium channel inhibitor that prevents seizures in Scn8a gain-of-function mice, and wild-type mice and rats. Elife. 2022;11:e72468. doi:10.7554/ eLife.72468 

    32. Aiba I, Ning Y, Noebels JL. Persistent Na+ current couples spreading depolarization to seizures in Scn8a gain-of-function mice. Brain. 2025;148(9):3325-3339. doi:10.1093/brain/awaf120 

    33. Kahlig KM, Scott L, Hatch RJ, et al. The novel persistent sodium current inhibitor PRAX-562 has potent anticonvulsant activity with improved protective index relative to standard of care sodium channel blockers. Epilepsia. 2022;63(3):697-708. doi:10.1111/epi.17149 

  • Disclosures

    Dr. Sankar has served as a Consultant/Advisory for Biohaven, Jazz Pharmaceuticals, LivaNova, Neurelis, Ovid Therapeutics, SK Life Science, and UCB. He has served on the Data Safety Monitoring Board of Biohaven and Vertex Pharmaceuticals, and he has served on the Speakers Bureau of Biocodex, Jazz Pharmaceuticals, LivNova, Neurelis, SK Life Science, and UCB.

  • Cite This Article

    Sankar R. Pharmacology of emerging sodium channel antagonists for the treatment of epilepsy. Practical Neurology (US). 2025;24(8):13-15;16.

Recommended
Details
  • References

    1. Brodie MJ. Antiepileptic drug therapy: the story so far. Seizure. 2010;19(10):650-655. doi:10.1016/j.seizure.2010.10.027 

    2. Sankar R, Weaver DF. Basic principles of medicinal chemistry. In: Engel J Jr, Pedley TA, eds. Epilepsy: A Comprehensive Textbook. Lippincott-Raven; 1998:1393-1403. 

    3. Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952;116(4):449-472. doi:10.1113/jphysiol.1952.sp004717 

    4. McLean MJ, Macdonald RL. Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. J Pharmacol Exp Ther. 1983;227(3):779-789. 

    5. McLean MJ, Macdonald RL. Carbamazepine and 10,11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther. 1986;238(2):727-738. 

    6. McLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther. 1986;237(3):1001-1011. 

    7. Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology. 2020;168:107966. doi:10.1016/j.neuropharm.2020.107966 

    8. Catterall WA. Forty years of sodium channels: structure, function, pharmacology, and epilepsy. Neurochem Res. 2017;42(9):2495-2504. doi:10.1007/s11064-017-2314-9 

    9. Whitaker WR, Clare JJ, Powell AJ, et al. Distribution of voltage-gated sodium channel alpha-subunit and beta-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. J Comp Neurol. 2000;422(1):123-139. doi:10.1002/ (sici)1096-9861(20000619)422:1<123::aid-cne8>3.0.co;2-x 

    10. Lorincz A, Nusser Z. Cell-type-dependent molecular composition of the axon initial segment. J Neurosci. 2008;28(53):14329-14340. doi:10.1523/JNEUROSCI.4833-08.2008 

    11. Matsumoto H, Ajmone Marsan C. Cellular mechanisms in experimental epileptic seizures. Science. 1964;144(3615):193-194. doi:10.1126/science.144.3615.193 

    12. Matsumoto H. Intracellular events during the activation of cortical epileptiform discharges. Electroencephalogr Clin Neurophysiol. 1964;17:294-307. doi:10.1016/0013-4694(64)90130-0 

    13. Stafstrom CE. Persistent sodium current and its role in epilepsy. Epilepsy Curr. 2007;7(1):15-22. doi:10.1111/j.1535- 7511.2007.00156.x 

    14. Kearney JA, Plummer NW, Smith MR, et al. A gain-of-function sequence variation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience. 2001;102(2):307-317. doi:10.1016/s0306- 4522(00)00479-6 

    15. Lopez-Santiago LF, Yuan Y, Wagnon JL, et al. Neuronal hyperexcitability in a mouse model of SCN8A epileptic encephalopathy. Proc Natl Acad Sci USA. 2017;114(9):2383-2388. doi:10.1073/pnas.1616821114 

    16. Chen S, Su H, Yue C, et al. An increase in persistent sodium current contributes to intrinsic neuronal bursting after status epilepticus. J Neurophysiol. 2011;105(1):117-129. doi:10.1152/jn.00184.2010 

    17. Becker AJ, Pitsch J, Sochivko D, et al. Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci. 2008;28(49):13341-13353. doi:10.1523/JNEUROSCI.1421-08.2008 

    18. Jung S, Warner LN, Pitsch J, et al. Rapid loss of dendritic HCN channel expression in hippocampal pyramidal neurons following status epilepticus. J Neurosci. 2011;31(40):14291-14295. doi:10.1523/JNEUROSCI.1148-11.2011 

    19. Blumenfeld H, Lampert A, Klein JP, et al. Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis. Epilepsia. 2009;50(1):44-55. doi:10.1111/j.1528-1167.2008.01710.x 

    20. Vreugdenhil M, Hoogland G, van Veelen CW, Wadman WJ. Persistent sodium current in subicular neurons isolated from patients with temporal lobe epilepsy. Eur J Neurosci. 2004;19(10):2769-2778. doi:10.1111/j.1460- 9568.2004.03400.x 

    21. Aman TK, Raman IM. Resurgent current in context: insights from the structure and function of Na and K channels. Biophys J. 2024;123(14):1924-1941. doi:10.1016/j.bpj.2023.12.016 

    22. Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci. 2004;5(7):553-564. doi:10.1038/nrn1430 

    23. Wengert ER, Patel MK. The role of the persistent sodium current in epilepsy. Epilepsy Curr. 2021;21(1):40-47. doi:10.1177/1535759720973978 

    24. Goodchild SJ, Shuart NG, Williams AD, et al. Molecular pharmacology of selective NaV1.6 and dual NaV1.6/NaV1.2 channel inhibitors that suppress excitatory neuronal activity ex vivo. ACS Chem Neurosci. 2024;15(6):1169-1184. doi:10.1021/acschemneuro.3c00757 

    25. Nakamura M, Cho JH, Shin H, Jang IS. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur J Pharmacol. 2019;855:175-182. doi:10.1016/j. ejphar.2019.05.007 

    26. Makridis KL, Friedo AL, Kellinghaus C, et al. Successful treatment of adult Dravet syndrome patients with cenobamate. Epilepsia. 2022;63(12):e164-e171. doi:10.1111/epi.17427 

    27. Cagigal R, Romero-Del-Rincon C, Fernandez-Perrone A, et al. Lack of effectiveness and seizure worsening with cenobamate in pediatric patients with Dravet syndrome. Epilepsia. 2025;66(6):e83-e89. doi:10.1111/epi.18426 

    28. Gjerulfsen CE, Oudin MJ, Furia F, et al. Cenobamate as add-on treatment for SCN8A developmental and epileptic encephalopathy. Epilepsia. 2025;66(4):1119-1128. doi:10.1111/epi.18257 

    29. Sharma R, Nakamura M, Neupane C, et al. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur J Pharmacol. 2020;879:173117. doi:10.1016/j.ejphar.2020.173117 

    30. Focken T, Burford K, Grimwood ME, et al. Identification of CNS-penetrant aryl sulfonamides as isoform-selective NaV1.6 inhibitors with efficacy in mouse models of epilepsy. J Med Chem. 2019;62(21):9618-9641. doi:10.1021/acs. jmedchem.9b01032 

    31. Johnson JP, Focken T, Khakh K, et al. NBI-921352, a first-in-class, NaV1.6 selective, sodium channel inhibitor that prevents seizures in Scn8a gain-of-function mice, and wild-type mice and rats. Elife. 2022;11:e72468. doi:10.7554/ eLife.72468 

    32. Aiba I, Ning Y, Noebels JL. Persistent Na+ current couples spreading depolarization to seizures in Scn8a gain-of-function mice. Brain. 2025;148(9):3325-3339. doi:10.1093/brain/awaf120 

    33. Kahlig KM, Scott L, Hatch RJ, et al. The novel persistent sodium current inhibitor PRAX-562 has potent anticonvulsant activity with improved protective index relative to standard of care sodium channel blockers. Epilepsia. 2022;63(3):697-708. doi:10.1111/epi.17149 

  • Disclosures

    Dr. Sankar has served as a Consultant/Advisory for Biohaven, Jazz Pharmaceuticals, LivaNova, Neurelis, Ovid Therapeutics, SK Life Science, and UCB. He has served on the Data Safety Monitoring Board of Biohaven and Vertex Pharmaceuticals, and he has served on the Speakers Bureau of Biocodex, Jazz Pharmaceuticals, LivNova, Neurelis, SK Life Science, and UCB.

  • Cite This Article

    Sankar R. Pharmacology of emerging sodium channel antagonists for the treatment of epilepsy. Practical Neurology (US). 2025;24(8):13-15;16.

Register

We’re glad to see you’re enjoying ReachMD…
but how about a more personalized experience?

Register for free