1. Brodie MJ. Antiepileptic drug therapy: the story so far. Seizure. 2010;19(10):650-655. doi:10.1016/j.seizure.2010.10.027
2. Sankar R, Weaver DF. Basic principles of medicinal chemistry. In: Engel J Jr, Pedley TA, eds. Epilepsy: A Comprehensive Textbook. Lippincott-Raven; 1998:1393-1403.
3. Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952;116(4):449-472. doi:10.1113/jphysiol.1952.sp004717
4. McLean MJ, Macdonald RL. Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. J Pharmacol Exp Ther. 1983;227(3):779-789.
5. McLean MJ, Macdonald RL. Carbamazepine and 10,11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther. 1986;238(2):727-738.
6. McLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther. 1986;237(3):1001-1011.
7. Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology. 2020;168:107966. doi:10.1016/j.neuropharm.2020.107966
8. Catterall WA. Forty years of sodium channels: structure, function, pharmacology, and epilepsy. Neurochem Res. 2017;42(9):2495-2504. doi:10.1007/s11064-017-2314-9
9. Whitaker WR, Clare JJ, Powell AJ, et al. Distribution of voltage-gated sodium channel alpha-subunit and beta-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. J Comp Neurol. 2000;422(1):123-139. doi:10.1002/ (sici)1096-9861(20000619)422:1<123::aid-cne8>3.0.co;2-x
10. Lorincz A, Nusser Z. Cell-type-dependent molecular composition of the axon initial segment. J Neurosci. 2008;28(53):14329-14340. doi:10.1523/JNEUROSCI.4833-08.2008
11. Matsumoto H, Ajmone Marsan C. Cellular mechanisms in experimental epileptic seizures. Science. 1964;144(3615):193-194. doi:10.1126/science.144.3615.193
12. Matsumoto H. Intracellular events during the activation of cortical epileptiform discharges. Electroencephalogr Clin Neurophysiol. 1964;17:294-307. doi:10.1016/0013-4694(64)90130-0
13. Stafstrom CE. Persistent sodium current and its role in epilepsy. Epilepsy Curr. 2007;7(1):15-22. doi:10.1111/j.1535- 7511.2007.00156.x
14. Kearney JA, Plummer NW, Smith MR, et al. A gain-of-function sequence variation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience. 2001;102(2):307-317. doi:10.1016/s0306- 4522(00)00479-6
15. Lopez-Santiago LF, Yuan Y, Wagnon JL, et al. Neuronal hyperexcitability in a mouse model of SCN8A epileptic encephalopathy. Proc Natl Acad Sci USA. 2017;114(9):2383-2388. doi:10.1073/pnas.1616821114
16. Chen S, Su H, Yue C, et al. An increase in persistent sodium current contributes to intrinsic neuronal bursting after status epilepticus. J Neurophysiol. 2011;105(1):117-129. doi:10.1152/jn.00184.2010
17. Becker AJ, Pitsch J, Sochivko D, et al. Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci. 2008;28(49):13341-13353. doi:10.1523/JNEUROSCI.1421-08.2008
18. Jung S, Warner LN, Pitsch J, et al. Rapid loss of dendritic HCN channel expression in hippocampal pyramidal neurons following status epilepticus. J Neurosci. 2011;31(40):14291-14295. doi:10.1523/JNEUROSCI.1148-11.2011
19. Blumenfeld H, Lampert A, Klein JP, et al. Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis. Epilepsia. 2009;50(1):44-55. doi:10.1111/j.1528-1167.2008.01710.x
20. Vreugdenhil M, Hoogland G, van Veelen CW, Wadman WJ. Persistent sodium current in subicular neurons isolated from patients with temporal lobe epilepsy. Eur J Neurosci. 2004;19(10):2769-2778. doi:10.1111/j.1460- 9568.2004.03400.x
21. Aman TK, Raman IM. Resurgent current in context: insights from the structure and function of Na and K channels. Biophys J. 2024;123(14):1924-1941. doi:10.1016/j.bpj.2023.12.016
22. Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci. 2004;5(7):553-564. doi:10.1038/nrn1430
23. Wengert ER, Patel MK. The role of the persistent sodium current in epilepsy. Epilepsy Curr. 2021;21(1):40-47. doi:10.1177/1535759720973978
24. Goodchild SJ, Shuart NG, Williams AD, et al. Molecular pharmacology of selective NaV1.6 and dual NaV1.6/NaV1.2 channel inhibitors that suppress excitatory neuronal activity ex vivo. ACS Chem Neurosci. 2024;15(6):1169-1184. doi:10.1021/acschemneuro.3c00757
25. Nakamura M, Cho JH, Shin H, Jang IS. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur J Pharmacol. 2019;855:175-182. doi:10.1016/j. ejphar.2019.05.007
26. Makridis KL, Friedo AL, Kellinghaus C, et al. Successful treatment of adult Dravet syndrome patients with cenobamate. Epilepsia. 2022;63(12):e164-e171. doi:10.1111/epi.17427
27. Cagigal R, Romero-Del-Rincon C, Fernandez-Perrone A, et al. Lack of effectiveness and seizure worsening with cenobamate in pediatric patients with Dravet syndrome. Epilepsia. 2025;66(6):e83-e89. doi:10.1111/epi.18426
28. Gjerulfsen CE, Oudin MJ, Furia F, et al. Cenobamate as add-on treatment for SCN8A developmental and epileptic encephalopathy. Epilepsia. 2025;66(4):1119-1128. doi:10.1111/epi.18257
29. Sharma R, Nakamura M, Neupane C, et al. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur J Pharmacol. 2020;879:173117. doi:10.1016/j.ejphar.2020.173117
30. Focken T, Burford K, Grimwood ME, et al. Identification of CNS-penetrant aryl sulfonamides as isoform-selective NaV1.6 inhibitors with efficacy in mouse models of epilepsy. J Med Chem. 2019;62(21):9618-9641. doi:10.1021/acs. jmedchem.9b01032
31. Johnson JP, Focken T, Khakh K, et al. NBI-921352, a first-in-class, NaV1.6 selective, sodium channel inhibitor that prevents seizures in Scn8a gain-of-function mice, and wild-type mice and rats. Elife. 2022;11:e72468. doi:10.7554/ eLife.72468
32. Aiba I, Ning Y, Noebels JL. Persistent Na+ current couples spreading depolarization to seizures in Scn8a gain-of-function mice. Brain. 2025;148(9):3325-3339. doi:10.1093/brain/awaf120
33. Kahlig KM, Scott L, Hatch RJ, et al. The novel persistent sodium current inhibitor PRAX-562 has potent anticonvulsant activity with improved protective index relative to standard of care sodium channel blockers. Epilepsia. 2022;63(3):697-708. doi:10.1111/epi.17149



