One reason the panel has had such an immediate impact is its unique nature and origin. St. Jude was one of the hospitals that originated the Pediatric Cancer Genome Project, which sequenced hundreds of patients to provide the most detailed overview of the genomic landscape of pediatric cancer. Prior research focused only on adult cancers, which are genetically distinct from childhood malignancies.
“We've taken all of the knowledge gained from the Pediatric Cancer Genome Project and other sequencing activities within the research space and have used that knowledge to generate this panel, which is now clinically implemented and has been run on over 600 samples in our clinical lab,” said Klco.
That legacy of expertise in childhood cancer genetics will continue to be built upon by incorporating more recent findings into the panel. For example, including the UBTF gene, which was discovered by Klco’s group in 2022. “Clinicians can feel comfortable knowing that the clinical sequencing that we provide to their patients is based on very current research results,” Klco said.
The success of the panel could have real consequences for patients around the world. Correctly diagnosing childhood cancer, and diagnosing it early, can help guide treatment and lead to better outcomes. However, whole genome sequencing requires expensive physical and digital infrastructure. The panel will give institutions without those resources a better chance at identifying those cancers.
“Panels like this are easier for a clinical or research lab to implement into pipelines than whole genome sequencing,” Easton said. “Not every place has the sequencing and analysis capabilities to deal with whole genome. We’ve given the field a more sensitive and practical test.”
While the panel will be commercially available, the St. Jude group also intends to freely share the knowledge of its makeup to help as many children as possible.
“Now that we have this panel, scientists around the world will be able to use it,” Ma said. “The panel is tiny. So, the costs, both sequencing and analytical costs, are going to be minimal and likely viable to use in developing countries and underserved regions.”
“We would be thrilled if more and more centers use this panel for sequencing pediatric cancers,” Klco said, “because we believe it will lead to better patient care and outcomes.”
The study’s co-first authors are Pandurang Kolekar, Vidya Balagopal and Li Dong, all of St. Jude. The study’s other authors are Joy Nakitandwe, Cleveland Clinic; Yanling Liu, Scott Foy, Quang Tran, Heather Mulder, Anna Huskey, Emily Plyler, Zhikai Liang, Jingqun Ma, Jiali Gu, Maria Namwanje, Jamie Maciaszek, Debbie Payne-Turner, Saradhi Mallampati and Lu Wang, St. Jude.
The study was supported by grants from the National Cancer Institute (R01CA273326), National Institutes of Health (Cancer Center Support Grant P30CA021765) and ALSAC, the fundraising and awareness organization of St. Jude.