Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of Cellular Senescence. Trends Cell Biol. 28, 436–453 (2018).
McHugh, D. & Gil, J. Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol.217, 65–77 (2018).
Prasanna, P. G. et al. Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. J. Natl. Cancer Inst.113, 1285–1298 (2021).
Calcinotto, A. et al. Cellular Senescence: Aging, Cancer, and Injury. Physiol. Rev.99, 1047–1078 (2019).
Raffaele, M. & Vinciguerra, M. The costs and benefits of senotherapeutics for human health. Lancet Healthy Longevity3, 67–77 (2022).
Hu, L. et al. Why Senescent Cells Are Resistant to Apoptosis: An Insight for Senolytic Development. Front. Cell Develop Biol.10, 822816 (2022).
Zhang, L. et al. Cellular senescence: a key therapeutic target in aging and diseases. J. Clin. Investig.132, e158450 (2022).
Kirkland, J. L. & Tchkonia, T. Cellular Senescence: A Translational Perspective. EBioMed.21, 21–28 (2017).
Soto-Gamez, A., Quax, W. J. & Demaria, M. Regulation of Survival Networks in Senescent Cells: From Mechanisms to Interventions. J. Mol. Biol.431, 2629–2643 (2019).
Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun8, 14532 (2017).
Lehmann, M. et al. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur. Resp. J.50, 1602367 (2017).
Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMed.40, 554–563 (2019).
Hickson, L. T. J. et al. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMed.47, 446–456 (2019).
Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci.22, 719–728 (2019).
Yang, H. et al. Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis. Aging12, 12750–12770 (2020).
Gil, T.-H. et al. Senolytic drugs relieve pain by reducing peripheral nociceptive signaling without modifying joint tissue damage in spontaneous osteoarthritis. Aging14, 6006–6027 (2022).
Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature562, 578–582 (2018).
Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell15, 428–435 (2016).
Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMed.36, 18–28 (2018).
Ijima, S. et al. Fisetin reduces the senescent tubular epithelial cell burden and also inhibits proliferative fibroblasts in murine lupus nephritis. Front. Immunol.13, 960601 (2022).
Liu, L. et al. Senolytic elimination of senescent macrophages restores muscle stem cell function in severely dystrophic muscle. Aging14, 7650–7661 (2022).
Camell, C. D. et al. Senolytics reduce coronavirus-related mortality in old mice. Science (1979)373, eabe4832 (2021).
Fang, Y. et al. Sexual dimorphic metabolic and cognitive responses of C57BL/6 mice to Fisetin or Dasatinib and quercetin cocktail oral treatment. Gerosciencehttps://doi.org/10.1007/s11357-023-00843-0 (2023).
Marinova, M., Solopov, P., Dimitropoulou, C., Colunga Biancatelli, R. M. L. & Catravas, J. D. Acute exposure of mice to hydrochloric acid leads to the development of chronic lung injury and pulmonary fibrosis. Inhal. Toxicol.31, 147–160 (2019).
Sibinska, Z. et al. Amplified canonical transforming growth factor-β signalling via heat shock protein 90 in pulmonary fibrosis. Eur. Resp. J.49, 1501941 (2017).
Sontake, V. et al. Hsp90 regulation of fibroblast activation in pulmonary fibrosis. JCI Insight2, e91454 (2017).
Chen, D. D. et al. HSP90 acts as a senomorphic target in senescent retinal pigmental epithelial cells. Aging13, 21547–21570 (2021).
Han, X. et al. FOXO4 peptide targets myofibroblast ameliorates bleomycin-induced pulmonary fibrosis in mice through ECM-receptor interaction pathway. J. Cell Mol. Med.https://doi.org/10.1111/jcmm.17333. (2022).
Chin, A. F. et al. Senolytic treatment reduces oxidative protein stress in an aging male murine model of post-traumatic osteoarthritis. Aging Cellhttps://doi.org/10.1111/acel.13979. (2023).
Hsu, B. et al. Safety, tolerability, pharmacokinetics, and clinical outcomes following treatment of painful knee osteoarthritis with senolytic molecule UBX0101. Osteoarthritis Cartilage28, S479–S480 (2020).
He, Y. et al. Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity. Aging Cell19, e13117 (2020).
Zhao, X.-B. et al. P22077 inhibits LPS-induced inflammatory response by promoting K48-linked ubiquitination and degradation of TRAF6. Aging12, 10969–10982 (2020).
Lin, Y. C. et al. USP7 promotes the osteoclast differentiation of CD14+ human peripheral blood monocytes in osteoporosis via HMGB1 deubiquitination. J. Orthop. Translat.40, 80–91 (2023).
Guerrero, A. et al. Galactose-modified duocarmycin prodrugs as senolytics. Aging Cell19, e13133 (2020).
Cai, Y. et al. Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res.30, 574–589 (2020).
Wang, K. et al. KDM4C-mediated senescence defense is a targetable vulnerability in gastric cancer harboring TP53 mutations. Clin Epigenetics15, 163 (2023).
Guerrero, A. et al. Cardiac glycosides are broad-spectrum senolytics. Nat. Metab.1, 1074–1088 (2019).
Smer-Barreto, V. et al. Discovery of senolytics using machine learning. Nat. Commun.14, 3445 (2023).
Meiners, F., Secci, R., Sueto, S., Fuellen, G. & Barrantes, I. Computational identification of natural senotherapeutic compounds that mimic dasatinib based on gene expression data. https://doi.org/10.1101/2022.05.26.492763 (2022).
Pramotton, F. M. et al. DYRK1B inhibition exerts senolytic effects on endothelial cells and rescues endothelial dysfunctions. Mech. Ageing Dev.213, 111836 (2023).
Lee, K-A., Flores, RR., Jang, IH., Saathoff, A. & Robbins, PD. Immune Senescence, Immunosenescence and Aging. Front. Aging.3, 900028 (2022).
Giannoula, Y., Kroemer, G. & Pietrocola, F. Cellular senescence and the host immune system in aging and age-related disorders. Biomed. J.46, 100581 (2023).
Kurioka, A. & Klenerman, P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Seminars Immunol.69, 101816 (2023).
Naigeon, M. et al. Human virome profiling identified CMV as the major viral driver of a high accumulation of senescent CD8 + T cells in patients with advanced NSCLC. Sci. Adv.9, eadh0708 (2023).
Wang, T. W. et al. Blocking PD-L1–PD-1 improves senescence surveillance and ageing phenotypes. Nature611, 358–364 (2022).
Shapiro, M. R. et al. Human immune phenotyping reveals accelerated aging in type 1 diabetes. JCI Insight8, e170767 (2023).
Schloesser, D. et al. Senescent cells suppress macrophage-mediated corpse removal via upregulation of the CD47-QPCT/L axis. J. Cell Biol.222, e202207097 (2023).
Jatal, R. et al. Sphingomyelin nanosystems decorated with TSP-1 derived peptide targeting senescent cells. Int. J. Pharm.617, 121618 (2022).
Poblocka, M. et al. Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Sci. Rep.11, 20358 (2021).
Takaya, K., Asou, T. & Kishi, K. New Senolysis approach via antibody-drug conjugate targeting of the senescent cell marker Apolipoprotein D for Skin Rejuvenation. Int. J. Mol. Sci.24, 5857 (2023).
Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med.28, 1556–1568 (2022).
Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature583, 127–132 (2020).
Amor, C. et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat. Aginghttps://doi.org/10.1038/s43587-023-00560-5 (2024).
Pereira, B. I. et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat. Commun.10, 2387 (2019).
Yang, D. et al. NKG2D-CAR T cells eliminate senescent cells in aged mice and nonhuman primates. Sci. Transl. Med.15, eadd1951 (2023).
Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol.20, 359–371 (2023).
Gajra, A. et al. Barriers to Chimeric Antigen Receptor T-Cell (CAR-T) Therapies in Clinical Practice. Pharmaceut. Med.36, 163–171 (2022).
Noll, J. H., Levine, B. L., June, C. H. & Fraietta, J. A. Beyond youth: Understanding CAR T cell fitness in the context of immunological aging. Semin. Immunol.70, 101840 (2023).
Zheng, Z. et al. Fine-Tuning through Generations: Advances in Structure and Production of CAR-T Therapy. Cancers15, 3476 (2023).
Lear, T. B. & Finkel, T. Senolytic vaccination: a new mandate for cardiovascular health? J. Cardiovasc. Aging2, 17 (2022).
Jiang, S. S. et al. Gene expression profiling suggests a pathological role of human bone marrow-derived mesenchymal stem cells in aging-related skeletal diseases. Aging3, 672–684 (2011).
Suda, M. et al. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging1, 1117–1126 (2021).
Mendelsohn, A. R. & Larrick, J. W. Antiaging Vaccines Targeting Senescent Cells. Rejuvenation Res.25, 39–45 (2022).
Chung, J.-S., Bonkobara, M., Tomihari, M., Cruz, P. D. & Ariizumi, K. The DC-HIL/syndecan-4 pathway inhibits human allogeneic T-cell responses. Eur. J. Immunol.39, 965–974 (2009).
Tomihari, M., Chung, J.-S., Akiyoshi, H., Cruz, P. D. & Ariizumi, K. DC-HIL/glycoprotein Nmb promotes growth of melanoma in mice by inhibiting the activation of tumor-reactive T cells. Cancer Res.70, 5778–5787 (2010).
Pera, A. et al. Immunosenescence: Implications for response to infection and vaccination in older people. Maturitas82, 50–55 (2015).
Shirakawa, K. et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J. Clin. Invest.126, 4626–4639 (2016).
Després, J.-P. Is visceral obesity the cause of the metabolic syndrome? Ann. Med.38, 52–63 (2006).
Després, J.-P. Body fat distribution and risk of cardiovascular disease: an update. Circulation126, 1301–1313 (2012).
Yoshida, S. et al. The CD153 vaccine is a senotherapeutic option for preventing the accumulation of senescent T cells in mice. Nat. Commun.11, 2482 (2020).
Wang, B., Kohli, J. & Demaria, M. Senescent Cells in Cancer Therapy: Friends or Foes?. Trends Cancer6, 838–857 (2020).
Liu, Y. et al. Senescent cancer cell vaccines induce cytotoxic T cell responses targeting primary tumors and disseminated tumor cells. J. Immunother. Cancer11, e005862 (2023).
Hong, J. et al. Senescent cancer cell-derived nanovesicle as a personalized therapeutic cancer vaccine. Exp. Mol. Med.55, 541–554 (2023).
Marin, I. et al. Cellular Senescence Is Immunogenic and Promotes Antitumor Immunity. Cancer Discov.13, 410–431 (2023).