Be part of the knowledge.

We’re glad to see you’re enjoying ReachMD…
but how about a more personalized experience?

Register for free

Chatter Distracts from News over Social Media—How Did This Affect COVID-19 Spread in the US?

ReachMD Healthcare Image
A sketch to demonstrate our model. First, scientific information relates to the disease spreads with a higher probability during an epidemic, and people who receive it will be more aware of the disease, becoming less susceptible to infection. However, while a major social event occurs during the epidemic, people's attention will be diverted from scientific information to the social event, with lower probability for the scientific information spreading. People are therefore less likely to become aware, making them more susceptible to infection. Credit: Junhan Yang, Ke-ke Shang and Bin Yang.

How major social events affect the spread of epidemic is an important topic that researchers in various related fields pay close attention to. However, previous mathematical models have not accurately explained or simulated the impact of social events on epidemic prevention, the growth of epidemic cases and the spread of epidemic prevention knowledge at the same time.

The research team from the Computational Communication Collaboratory of Nanjing University and the Complex Systems Group of The University of Western Australia, hypothesize that raising people's awareness of disease is one of the most effective ways to prevent epidemic spreading, as it will change people's behavior, better inform them of appropriate protective measures, and thus reduce the probability of infection.

Improving people's awareness of diseases requires the continuous and effective dissemination of scientific information related to infectious diseases. However, the dissemination of information related to infectious disease competes with the dissemination of discussion around major social events, as well as the dissemination of information such as false news and rumors.

To understand the impact of major social interference events, the research team proposed a two-layer network communication model that reflects how major social events affect the spread of epidemic prevention knowledge and the growth of cases, based on the SIR model that is renowned in the field of applied mathematics.

Taking the United States as an example, the authors use three real data sets to compare with the model, including the confirmed data of the United States, the topic data of Twitter, and the forwarding of scientific literature on Twitter. The research team found that their model was consistent with the behavior of all the three data sets at the same time.

(a) Evolution of the popularity of hashtags corresponding to two possible events and COVID-19-related information on Twitter. (b) Competition effect I calculated by popularity of the hashtags of #COVID, #Election2020, #Chinesevirus and #Chinavirus. (c-d) SIR-UAU two-layer network simulated from empirical data, where the information dissemination rate is completely obtained from the hashtags of the possible two events. Credit: Bin Yang, Michael Small and Ke-ke Shang

Specifically, two specific major events explain the trend of the coronavirus epidemic in the United States: the international online agenda setting of Donald Trump in early stage of the epidemic, and, the 2020 U.S. Presidential Election. These events coincided with a worsening of infection in the United States.

Research shows that major social events during the epidemic period will lead to the disturbance of scientific information dissemination, and will increase the prevalence of infection. Their theoretical model provides a mechanism for the distraction of attention and dilution of information propagation in response to an epidemic.

Finally, CSIRO-UWA Chair of Complex Systems, Professor Michael Small, pointed out that the model matches both qualitatively and quantitatively the events surrounding the 2020 COVID-19 outbreak in the United States and the concurrent political environment. The model provides a plausible explanation—consistent with data—for the timing and relatively severity of the 2020 COVID-19 waves in the United States.

The practical consequences of this are two-fold. First, in a general sense our work provides a cautionary lesson around the effect of distracting from important public health messages, Second, it provides a more concrete way to understand the link between the timing of protective information dissemination and infection. Lessons from this modeling have been used by at least one of our governments to better managed the control of COVID-19 in their own jurisdiction.

The study is published in the journal National Science Open.

More information:
Bin Yang et al, Information overload: How hot topics distract from news—COVID-19 spread in the USA, National Science Open (2022). DOI: 10.1360/nso/20220051

Provided by Science China Press

Citation: Chatter distracts from news over social media—how did this affect COVID-19 spread in the US? (2023, February 24) retrieved 24 February 2023 from

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Facebook Comments

Schedule20 Jun 2024